Mathematics
 Higher level
 Paper 3 - sets, relations and groups

Wednesday 9 May 2018 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A graphic display calculator is required for this paper.
- A clean copy of the mathematics HL and further mathematics HL formula booklet is required for this paper.
- The maximum mark for this examination paper is [50 marks].

Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. In particular, solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 13]

The binary operation multiplication modulo 10 , denoted by \times_{10}, is defined on the set $T=\{2,4,6,8\}$ and represented in the following Cayley table.

\times_{10}	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{6}$	$\mathbf{8}$
$\mathbf{2}$	4	8	2	6
$\mathbf{4}$	8	6	4	2
$\mathbf{6}$	2	4	6	8
$\mathbf{8}$	6	2	8	4

(a) Show that $\left\{T, \times_{10}\right\}$ is a group. (You may assume associativity.)
(b) By making reference to the Cayley table, explain why T is Abelian.
(c) (i) Find the order of each element of $\left\{T, \times_{10}\right\}$.
(ii) Hence show that $\left\{T, \times_{10}\right\}$ is cyclic and write down all its generators.

The binary operation multiplication modulo 10 , denoted by x_{10}, is defined on the set $V=\{1,3,5,7,9\}$.
(d) Show that $\left\{V, \times_{10}\right\}$ is not a group.
2. [Maximum mark: 8]
(a) Consider the sets $A=\{1,3,5,7,9\}, B=\{2,3,5,7,11\}$ and $C=\{1,3,7,15,31\}$.
(i) Find $(A \cup B) \cap(A \cup C)$.
(ii) Verify that $A \backslash C \neq C \backslash A$.

Let S be a set containing n elements where $n \in \mathbb{N}$.
(b) Show that S has 2^{n} subsets.
3. [Maximum mark: 8]

The relation R is defined such that $x R y$ if and only if $|x|+|y|=|x+y|$ for $x, y \in \mathbb{R}$.
(a) Show that R is
(i) reflexive;
(ii) symmetric.
(b) Show, by means of an example, that R is not transitive.
4. [Maximum mark: 12]

The set of all permutations of the list of the integers $1,2,3,4$ is a group, S_{4}, under the operation of function composition.
(a) Determine the order of S_{4}.

In the group S_{4} let $p_{1}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4\end{array}\right)$ and $p_{2}=\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 1 & 3 & 4\end{array}\right)$.
(b) Find the proper subgroup H of order 6 containing p_{1}, p_{2} and their compositions.

Express each element of H in cycle form.
Let $f: S_{4} \rightarrow S_{4}$ be defined by $f(p)=p \circ p$ for $p \in S_{4}$.
(c) Using p_{1} and p_{2}, explain why f is not a homomorphism.
5. [Maximum mark: 9]

The function $f: \mathbb{Z} \rightarrow \mathbb{Z}$ is defined by $f(n)=n+(-1)^{n}$.
(a) Prove that $f \circ f$ is the identity function.
(b) Show that
(i) f is injective;
(ii) f is surjective.

